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Topics (1-3:in literature; 4:new)

1. What are implied volatility smiles & why asymptotics?

2. The Main Theorem for computation at T = 0.

3. General approaches to the computation:
(i) Compute geodesics.
(i) Solve a generalized Eikonal problem.
(ili) Take a limit with a characteristic function.

4. Elements of the solution for the CEV(p)-vol model:
(PER,|p|<])

ds = Ws{ pdB(1)++/1— pde(Z)}
dV = VPdB(1)
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Option Prices follow the Black-Scholes model
with a “custom volatility” — the implied volatility

ECa]l Option Price vs. Stock Price
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Black-Scholes formula:
Cps(S,K,T,0)=8P(d,)— Ke_rT(I)(d— )

3
where ®(z) = f e=*'2_X_ — cumulative normal

—00 21
—rT 2
and di:log(S/Ke \/T):I:O' T/2
o

Real-world price: C,,puer = Cps (S, K, T,0plica)
State-dependent model: C(S,K,T,0) = Cps(S,K,T,0plica)

Of course, for this to work: o ypiiea = f(S,K,T,0)



Stochastic Volatility Models

Working example: CEV(p)-vol model: (VV = o?%)

ds, = rS,dt + o,S,dBY
dv, = b(V,)dt + £V (pdB" +\1— p*dB{”)

For this class of models:
(Stock price level independent/Translation invariant):

O impliea = J(T'5X,)
where x = log(S/ K) = log(Stock Price/Strike Price)

y =V = Stochastic volatility

In general, o©,,;,; must be numerically computed. But ...

The very nice property is that it has a
formal power series (all diffusions):

) Gimpiiea = SO +T O, +T? [P (x,9)+

Proof: (I) Substitute C(S, K, T,H) = CBS (S, K, T, Uimplied)
in the PDE for C(S,K,T,0) (generic n-factor diffusion)
(IT) Result is ugly, but ansatz (*) works (ugly=-beautiful)



Typical market example (SPX)
1 259
Oimp(T = TRAR A yf)

SPX implied volatility 7, (X), one month-to-go

SPX Options: Implied Volatility vs. Strike on Aug. 16,2002 (1 monthto Expiration)
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Today, we explain how to compute the leading

T — 0 behavior in stochastic volatility models:

Gimp(xay) = f(O)(xay) — lilnT—)O O implied (T,x,y)
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The Main Theorem for computing Asymptotic Smile
O imp (x,y) = limy_,, O implied (T,x,y)

Before stating it, we need a lemma (real proofs: see Varadhan):
Background: the call option price is determined by

C(T,S8),Vo; K) = e™"" E s,y [(Sp — K)]
'
=e’ j; max[0,S7 — K] q(T',S8¢,Vy;87)dSt
where the probability transition density

q(T,80,Vo;87)dST = P, p)[ST € dST].

reflects arriving at the terminal stock price S;with any volatility.
This is distinguished from the ‘complete’ transition density:

P(Ts805Vos St Vr)dSrdVy = Ps, vy [St € dSt,Vr € dVr]

Let’s abbreviate the ‘state variables’ by Xt = (S;.V;).
By the Markov property, for any time sub-division 7 = nAt¢,

q(T,80,Vo5;87) =
f p(Ata';O;;ﬁ )p(At9;t1 ;}1‘2 ) e p(Atﬁztn—l ;;tn ) dxtl e °dxtn_1dVT



The Main Theorem (cont)
q(T,S¢,Vo3;87) =
fp(Ata X05 X1 )p(Ata Xt s Xt, ) ) 'p(Ata Xt,_15Xt, ) dxt1 o 'dxtn_ldVT

Heuristic argument:
P(At,x;y) is the transition density for a [2D] diffusion process

with drift l: = F(;t) and variance-covariance matrix
a; = [aij(xt)]a (i, j=1L-,D)

For small enough Az, the transition densities must be
approximately D-dimensional Gaussian:

~. 1
At,x;y) =~ X
p( y) (27T)D/2(deta)1/2

exp{ S A7 [y x— b(x)At]a (x)[y x— b(x)At]}

To leading order, the drifts E(x)At don’t contribute:
q(T,8,Vy387) =

fexp{ ZAtZ(xt — X, )'a” (xt, (X, — Xy, 1)]dx,1---dx,n1dVT

Note: I am writing x, = D-vector with no arrows now [D = 2].


http://www.optioncity.net/

The Main Theorem (cont)

q(TasﬂaVO;ST) ~

feXpl 2Atz( t; — Xy, 1) a (xt, (X, — x;, l)ldxtl.”dxtnldVT

In the limit, the points { x, } — {x, } create a continuous

path (for any diffusion). The integrand is a maximum along the
paths { x, } which minimize the sum and becomes concentrated

there (saddle point/steepest descent/ WKB/etc idea). Interpret

— -1 . .
g = a (x)=][g;j(x)] as a metric tensor

With implied sums (i, j = 1,---, D) on upper/lower repeated

indices:

Z(xt —x; )'a (x, ), — X, )

2A¢t4
. g (x X, — t,-_l) (xt,- — Xt )k
1, i (s)i) c — dx
o a7 ICENE () (s)ds, | & =4

[using Azt = (As)T, so nAt = nAsT =T — nAs =1]



The Main Theorem (cont)

Lemma: q(T,S[),VO;ST) ~
T—0

1 . 1 i i
exp _ﬁx(()):n(g:}m j; 8ii (x(8))x' (s)x! (s)ds

x(1)=(S7, free)

I Example of a large deviation principle.
Example of a geodesic distance function:

Indeed, Varadhan proved, for D-dimensional diffusions,
with A = some set not containing x, that:

T—0 2T

P.[X; € A] ~ exp{—m},

where

1

2 _ . . . 1 . ]

d*(x,A) = min_ [ g (Y)Y ()77 (5)ds
y(H)eA

The minimizing paths are geodesics
[in a Riemannian space (M, g)]

Notation: Expression(T) Tzo exp { _I( Pt;’ms) }
_>

means I(parms) = —limy_,o T log Expression(7).
This accounts for many missing factors!



The Main Theorem (cont)

Recall from an earlier slide:

St
C(T,So,Vo; K) = ™" [ " max[0, 57 — K14(T,Sy,Vy; S7)dSy

2
d ——max|[0,8; — K] = d(S; — K), (Dirac delta), we have

Since ——
dK*

d2 rT
2C(T SOaV()aK)_e (T SOaV()aK)

dK
{ dz(xo,yo;Ak)}

X~ exp

T—0 2T

using xo = log Sy, yo =Vy, and d*(xo,¥o54x)
is the geodesic distance to the set 4, := the line x = k = log K
in the state space (x, y).

With multi-factor (say m factors) stochastic volatility
models, the state is (x,,0,) = (x,,0;,07%,---,0™),
then y, = 50 , and 4, :=same x = k (hyperplane now).

10
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The Main Theorem (cont)

2
(1) LCT,$0,V3K) & exp{—

dz(x(),)’o§Ak)
dK*

2T

For the Black-Scholes model, with an out-of-the money call (S<K),

2
d ZCBS(T SOsVﬂaK) exp{—

(xq — k)’ }
dK

2V, T

Hence, for a general stochastic volatility model,

2 . 2
@ Le,8, k) & exp{ (%o — k) }
dK 2Uimp(x0 _kayO)T

By translation invariance in the x coordinate:
d* (X9, yos Ax) = d*(xg — k, yo54p),

11



The Main Theorem (cont)

dK 2T

(x0 — k)* }
201'2mp(x0_k9y0)T ,

2 9 B .
d 5 C(T,50,Vy;K) =~ exp{—d (Xo k,yO,AO)}
T—0

~ €X —
T—0 p{

So, comparing, finally yields the main theorem:
Solution to the asymptotic smile problem for diffusions:

x2

2
Oimp(X,Y) = ————
PO = e e

where d(x, y) = minimum geodesic distance from P = (x, y) to
the y-axis. Now x and y are scalar coordinates (recall: the
financial variables arex = log(S,/ K), and y =},). We have

suppressed the dependence on the target set A. The target set is
always the y-axis in the remainder of the presentation.
Pictorial solution:(free endpoint/geodesic) problem:

Target=set A

12



Hitting the Target: the Local Volatility Connection

Target=set A

(X.Y) TY

X (0.0)

Given the metric g =[g;i(x,y)], and the starting point

Py = (x,y), one can compute all the geodesics that pass
through F,. For reasonably close values of x, one of these
geodesics will be the distance minimizer to the target. It hits
the target at some optimal y = y;. It can be shown, although
we don’t have time today, that

y1 =limg_ g Es, p)[Vr | ST = K]
= limy_.,a(T,S,,K,V,) (the effective local volatility)
[VepT,S0,Vos K Ve)avy

[ p(T, S0, Vs K Ve yavy

Effective local volatility (2D problem is equiv. to 1D):
C(T,S,K.,V) solves exactly, for all T,

Cr = %a(T,S,K,V)KZCKK — rKCy

= limz_,g

13



General approaches to computation

We need the distance function d(x,y).

Take the CEV(p)-vol model, for example.
The variance-covariance matrix and the metric are

3 y pyp—l—l/z
a(x,y) = glj :[
( ) pyp-l—l/z y2p
1 —p—1/2
_ 1 y —pPYy
glx,y)=a""=(gy)= [ o _ ]
Y 1_p2 —py p—1/2 y 2p

Here are three general methods.

Method (1): Compute all the geodesics {'yi (T)} ={X(7),Y(7)}
leaving(x, y). The geodesic equations are well-known:
d2,yi

. dyd dyE
T —
d+2 L) dr drt

09 (i:1,2)

where the Christoffel symbol components are given by

O8mj  Ogmi _ I8k
Ox* ox/  Ox™

Tl (x) = 5 g™ (x)

14
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General approaches to computation (Geodesic method)

There are two constants of the motion:

(i) Kkinematic condition:

X7, (07 _,
Y Y2P
(ii) conserved x-momentum: X = +./kY (k = const)

Note on the latter: Whenever the metric is independent
of a coordinate x', there is a conserved momentum:
U; = g;U’ = gy’ . In our case, the metric has no

x-dependence and so U; = g15' = X(7)/Y(T) = const,
(taking transformed orthogonal coordinates or p = 0).

Thus, there is a one parameter family of geodesics from
(x,y) to the target. One of these (k = k *) is

the distance minimizer. The main complication is that
the vertical distance to “infinity” is bounded for p > 1.

Moreover, this vertical move can sometimes be the shortest
way to the target. It is straightforward to show:

Theorem (Point-to-target distance bound):
Consider the standardized base point £, = (x,1).

Then, under the CEV(p)-VOl metric,
d(x,1) < 25 <oo, (p>1and |[p[<1)

This bound reﬂects moving along a vertical geodesic to co

15



General approaches to computation (Geodesic method)

CEV(p)-vol model solution (p =0, p € R)

First, define the function F,(k) = B,_,(},1— p),
where B, (a,b) = f;) i t*1(1— 1) tdt (Incomplete Beta).
Luse G,(k)=k?"*'*F,_i(k), and H ,(k) = kP F (k).

Basic Solution System (—oo < p < 3)

Step I: set z =|x|y?~*'? and
solve for the root k = k(z) that solves:
z=G,(k).

Step II: Then d(x,y)= y'"?H ,(k)

Modified Solution System (3 < p < o)
First, calculate the critical values pair:

kcrit — 021?%1{k . Hp(k) — ]-/(p_]-)}

Serit — Gp (kcrit)
Then, if z < z,,;, use the Basic Solution System, otherwise:

Hp (k)9 (Z < zcrit)

d(x,y)=y'""? X{
1/(]7 _ ]-)9 (Z 2 zcrit)

16
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General approaches to computation (Eikonal eqn)

Method (2): Solve a generalized Eikonal problem.
Abbreviating 8;d = 8d / Ox', where x! = x
and x? = y, the Eikonal/Hamilton-Jacobi eqn is:
a¥(9;d)(0 jd) =1 with bound cond: d(x =0,y) =0

ie. |ydi+2pyPt%d.d, + y*Pd: =1

This is the fastest way to a number.
The trick is to note that there is a scaling form solution:

p—3/2

d(x,y) = y' "PF(z), where z=xy

This yields, using a = p — 3/2, the non-linear ODE:

1+ 2paz + oz’ ](F')2 +2(1— p)p+az]FF'+(1— p)*F* =1

Easily solved numerically in Mathematica --
use the StoppingTest option to handle the critical z-values,
where F =1/(p —1). This ODE also forms the starting point

for a quasi-analytic solution for general (p, p) that extends
the p = 0 solution given in these slides. For details, see:

“Option Valuation under Stochastic Volatility: Volume II”.
Finance Press, Newport Beach (2007 forthcoming).

17




General approaches to the computation (Char. Func.)

Method (3): Take a limit with a characteristic function.
If you already know the characteristic function

(I)(T, z,V(]) — E(SO,VO)[eiZIOg(ST/SO)]’

you can rescale it and find d(x, y) from a
Legendre transform/saddle point.

This does not help us directly with the
general CEV(p)-vol model, as the characteristic
functions are known only for half-integers:

p= %1% (Heston,GARCH/SABR,%model)

But, multi-factor Heston-type models are
common in finance, and this may be the most
the most direct route to the asymptotics for
those applications.

(Details: see Martin Forde’s recent
paper: arXiv:math.PR/0609117)

18
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