USC Math. Finance April 22, 2003

"Path-dependent Option Valuation under Jump-diffusion Processes"

Alan L. Lewis

These overheads to be posted at www.optioncity.net (Publications)

Topics

Why jump-diffusion models?

Review of the vanilla Euro-style Valuation

A "Standard Machine" for Path-dependent Options:

- a. Perpetual American
- b. Knock-outs (Down-and-out call, etc.)
- c. One-touch Options (Rebate term)

Why Jump-Diffusion Models for Options?

I. Benchmark model (exponential Brownian motion):

Attractive features:

- limited liability stock prices
- · uncorrelated, level independent returns
- simple formulas (methods) for option prices (euro,amer)

Weak points:

- · Actual stock price distributions have wider tails
- · Lacks volatility clustering (auto-corr. of absolute returns)
- Lacks stock price jumps
- Poor fit to real-world option prices (smile/skew)

II. Jump-diffusion processes (exponential Lévy processes)

- Stationary, independent increment processes
- Continuous-time analog of Random Walk
- Brownian motion plus Poisson-driven jump process

Attractive features:

- all the attractive benchmark features +
- . large flexible class of models, each with a few parameters
- · wide return tails common (exponential decay, moments)
- Good fits to expiring options (fear of jumps/crashes?)

Weak points:

- Lacks volatility clustering (auto-corr. of absolute returns)
- Brownian motion \approx Large number of small jumps

Stock price Evolution and Examples

$$S_t = S_0 \exp(X_t),$$

(Assumption: this is under the martingale pricing measure Q)

where
$$X_t = ct + \sigma B_t + \Delta X_t$$
; $\Delta X_t = \sum_{i=1}^{n(t)} y_i$
Jump probability(t) $\approx \lambda \Delta t$ $y \sim p(y)$ (Jump distribution)

Examples of Jump distributions:

(A.1) Merton's 1976 jump-diffusion model with log-normally distributed jumps:

$$p(y) = \frac{1}{\sqrt{2\pi\delta^2}} \exp\left[-(y - \mu_J)^2 / 2\delta^2\right]$$

(A.2) Degenerate Case: Point-jump:

$$p(y) = \delta(y - \mu_J)$$

$$\lambda pprox 0.3, \;\; \mu_J pprox -0.25, \;\;\; \delta pprox 0.10$$

Figure 1
SPX Options: Implied Volatility vs. Strike on Aug. 16, 2002 (1 month to Expiration)

Vanilla European-style options Solutions in "Fourier" space are simple

Ingredients:

1. The generalized Fourier transform of the payoff function: For the call option:

$$\hat{g}(z) = \int_{-\infty}^{\infty} e^{-izx} (e^x - K)^+ dx = -\frac{K^{1-iz}}{(z^2 + iz)}, \quad \text{Im } z < 1$$

2. The characteristic function of the Lévy process:

$$\varphi_T(z) = \int_{-\infty}^{\infty} e^{izx} p_T(x) dx = \mathbb{E}[\exp(izX_T)] = \exp(-T\Psi(z))$$

where $\Psi(z)$ is the "characteristic exponent".

For the Point Jump model:

$$\psi(z) = -iz\omega + \frac{1}{2}z^2\sigma^2 - \lambda\{\exp(i\mu_J z) - 1\} \quad \text{(Entire)}$$

3. Finally, the Call Option price is given by :

$$C(S_0,K,T) = -\frac{e^{-rT}}{2\pi}K\int_{\mathrm{Im}\,z<-1}\left(\frac{S_0}{K}\right)^{iz}\frac{e^{-T\psi(z)}}{z(z+i)}dz,$$

The integration is along a line parallel to the real z-axis.

European-style options (cont.)

The solution is very easy to derive and "obvious":

First, we need the inversion formula for the payoff function:

$$g(x) = \frac{1}{2\pi} \int_{i\nu - \infty}^{i\nu + \infty} e^{izx} \hat{g}(z) dz, \quad x = \log S_T, \quad z \in \text{Payoff strip}$$

Then, by martingale pricing:

$$egin{aligned} C(S_0) &= e^{-r au} \mathbb{E}ig[g(\log S_T) ig] = rac{e^{-r au}}{2\pi} \mathbb{E}ig[\int_{i
u-\infty}^{i
u+\infty} (S_T)^{iz} \hat{g}(z) dz igg] \ &= rac{e^{-r au}}{2\pi} \mathbb{E}ig[\int_{i
u-\infty}^{i
u+\infty} (S_0)^{iz} e^{izX_T} \hat{g}(z) dz igg] \ &= rac{e^{-rT}}{2\pi} \int_{i
u-\infty}^{i
u+\infty} (S_0)^{iz} e^{-T\psi(z)} \hat{g}(z) dz \;, \end{aligned}$$

Ok to exchange the integrations (sufficient conditions) if:

- 1. g(x) is Fourier integrable in some Payoff strip S_g and bounded for $|x| < \infty$.
- 2. $\psi(z)$ is regular in some strip S_X : $\alpha < \operatorname{Im} z < \beta$
- 3. $\nu = \text{Im } z$ lies in the intersection of these two strips

A Standard Machine: the Down-and-out Call (or Down-and-out "anything")

How we will do it.

- 1. Write the payoff in terms of its Fourier Transform
- 2. Write the barrier condition using a representation for $1_{\{Y>0\}}$.
- 3. Bring an expectation inside an integral.
- 4. Find a "Fluctuation Identity" to do the expectation.
- 5. Done with General Formula!

This general procedure works for all the problems I listed at the beginning and probably lots of others.

It saves having to learn a lot of the "heavy machinery" of The Boyarchenko/Levendorskii approach.

- 6. Then, for your particular model:

 Try to do as many integrals as possible analytically;
 (Residue Calculus).
- 7. Do the remaining integrals numerically.

Down-and-out Call (or Down-and-out "anything") (cont).

1. Write the payoff in terms of its Fourier Transform

Minimum Process: $\underline{S}_T = \min_{0 \le t \le T} S_t$

$$C_{DOC}(S_0, K, H, T) = e^{-rT} E \left[(S_T - K)^+ 1_{\underline{S}_T > H} \right]$$

or, with $x = \log S_0$, $h = \log H$, and $N_T = \min_{0 \le t \le T} X_t$

$$f_{DOC}(x,T) = e^{-rT} E[(e^{x+X_T} - K)^+ 1_{N_T > h-x}]$$

$$= e^{-rT} E \left[\int_{\operatorname{Im} z < -1} \frac{dz}{2\pi} \exp \left\{ iz(x + X_T) \right\} \hat{g}(z) 1_{N_T > h - x} \right]$$

Down-and-out Call (or Down-and-out "anything") (cont)

2. Write the barrier condition using a representation for $1_{\{Y>0\}}$.

$$1_{Y>0} = \int_{\operatorname{Im} \xi < 0} \frac{d\xi}{2\pi i \xi} \exp(i\xi Y),$$

where
$$Y = x - h + N_T$$
.

This produces:

$$f_{DO}(x,T) = e^{-rT} \times$$

$$E\left[\int_{\operatorname{Im} z<-1} \frac{dz}{2\pi} \int_{\operatorname{Im} \xi<0} \frac{d\xi}{2\pi i \xi} \hat{g}(z) \exp(izx + i\xi(x-h)) \exp(izX_T + i\xi N_T)\right]$$

3. Bring an expectation inside an integral.

We need a formula for $E[\exp(izX_T+i\xi N_T)]$

4. Find a "Fluctuation Identity" to do the expectation

Some Fluctuation Identities:

1. Factorization identities: (Spitzer, Rogozin, others)

$$\frac{q}{q+\psi(z)}=\phi_q^+(z)\phi_q^-(z),$$

where

$$\phi_q^+(z) = E\left[\exp\left(izM_{\tau(q)}\right)\right] = q\int_0^\infty e^{-qt}E\left[e^{izM_t}\right]dt$$

$$\phi_q^-(z) = E\left[\exp\left(izN_{\tau(q)}\right)\right] = q\int_0^\infty e^{-qt}E\left[e^{izN_t}\right]dt$$

au(q) is an independent (exponentially distributed) random stopping time.

Not computationally effective. But, this one is:

$$\phi_q^-(\xi) = \exp \big\{ \int\limits_{(\operatorname{Im} \xi)^+ < \operatorname{Im} \eta < \sigma^+} \frac{d\eta}{(-2\pi i)} \frac{\xi \log \left[q + \psi(\eta) \right]}{\eta \left(\xi - \eta \right)} \, \big\}$$

4. Find a "Fluctuation Identity" to do the expectation

Some Fluctuation Identities:

2. Here's the one we really need:

$$q\int_0^\infty e^{-qT}E\big[\exp\big(izX_T+i\xi N_T\big)\big]dT=\phi_q^+(z)\phi_q^-(\xi+z)$$

By Laplace Inversion:

$$E\left[\exp\left(izX_T+i\xi N_T\right)\right] = \int_{\operatorname{Re}q>r} \frac{dq}{2\pi iq} e^{qT} \,\phi_q^+(z)\phi_q^-(\xi+z)$$

5. Done with General Formula!

Here it is:

$$f_{DO}(x,T) = \int_{\operatorname{Re}q > r} \frac{dq}{2\pi i} e^{qT} F_{DO}(x,q),$$

where for the call option payoff, it reads

$$F_{DOC}(x,q) = \left(\frac{Ke^{-rT}}{q}\right) \times$$

$$\int_{C_1} \frac{d\xi}{2\pi i} \int_{C_2} \frac{dz}{2\pi} \frac{\exp\left\{iz(h-k) + i\xi(x-h)\right\}}{(z-\xi)z(z+i)} \phi_q^+(z)\phi_q^-(\xi)$$

Integration contours:

 $C_1:\operatorname{Im}\lambda^-<\operatorname{Im}\xi<-1,$

 $C_2: \operatorname{Im} \alpha_1(q) < \operatorname{Im} z < -1 \text{ and } \operatorname{Im} \xi < \operatorname{Im} z$

- 6. Then, for your particular model:
 Try to do as many integrals as possible analytically;
 (Residue Calculus).
- 7. Do the remaining integrals numerically.

Example 1: Suppose your model has "No negative jumps". (This means the Barrier is crossed continuously).

When there are no negative jumps, the Laplace transform of the down-and-out call option is given by: (x > h)

$$F_{DOC}(x,q)\big|_{NNJ} = F_E(x,q) - \exp\{i\gamma(q)(x-h)\}F_E(h,q),$$

where $F_E(x,q)$ is the Laplace transform of the European (no barrier) call option:

$$F_E(x,q) = \int_{\operatorname{Im}\alpha_1(q) < \operatorname{Im}z < -1} \frac{dz}{2\pi} \frac{-Ke^{-rT}}{z(z+i)(q+\psi(z))} \exp\left\{iz(x-k)\right\}.$$

(This one could be proved directly from the PIDE).

- 6. Then, for your particular model:
 Try to do as many integrals as possible analytically;
 (Residue Calculus).
- 7. Do the remaining integrals numerically.

Example 2: Suppose your model has a "Negative Point Jump".

Then, you have to investigate the roots (zeros) of

$$q + \psi(z) = 0$$

where

$$q + \psi(z) = q - iz\omega + \frac{1}{2}z^2\sigma^2 - \lambda(\exp(i\mu_J z) - 1)$$

It turns out there are (almost certainly) an infinity of these in the complex z-plane. Then, I have a (conjectured) result using these roots:

$$F_{DOC}(x,q) = \frac{i e^{x-rT}}{\alpha(\alpha+i)} \left(\frac{1}{\psi'(\alpha)} + \lim_{N_{\gamma} \to \infty} \sum_{i=1}^{N_{\gamma}} \frac{\exp\left\{i(\gamma_{i} - \alpha)(x - h)\right\}}{\psi'(\gamma_{i})} \right)$$

 α is the single lower half-plane root. (Im $\alpha < 0$) γ_i are the infinity of upper half-plane roots. (Im $\gamma_i > 0$)

A plot of |f'(z)/f(z)| where $f(z)=r+\psi(z)$ for the Merton jump-diffusion

Figure 2. The location of some roots of $r+\psi(z)=0$ for the point jump model.