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Why jump-diffusion models?
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a. Perpetual American
b. Knock-outs (Down-and-out call, etc.)
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Why Jump-Diffusion Models for Options?

I. Benchmark model (exponential Brownian motion):

Attractive features:

. limited liability stock prices

. uncorrelated, level independent returns

. simple formulas (methods) for option prices (euro,amer)

Weak points:

. Actual stock price distributions have wider tails

. Lacks volatility clustering (auto-corr. of absolute returns)
. Lacks stock price jumps

. Poor fit to real-world option prices (smile/skew)

I1I. Jump-diffusion processes (exponential Lévy processes)
- Stationary, independent increment processes
- Continuous-time analog of Random Walk
- Brownian motion plus Poisson-driven jump process

Attractive features:

. all the attractive benchmark features +

. large flexible class of models, each with a few parameters
. wide return tails common (exponential decay, moments)
. Good fits to expiring options (fear of jumps/crashes?)

Weak points:
. Lacks volatility clustering (auto-corr. of absolute returns)
. Brownian motion =~ Large number of small jumps



Stock price Evolution and Examples

S = 8o exp(X;),
(Assumption: this is under the martingale pricing measure Q)

where X, = ct + oB, + AX,; AX, :Zy,-
i=1
Jump probability(t) =~ AAt  y~p(y) (Jump distribution)

Examples of Jump distributions:

(A.1) Merton’s 1976 jump-diffusion model with
log-normally distributed jumps:

PO = e[ (= py)* 1267
U

(A.2) Degenerate Case: Point-jump:

p(yY)=0(y— )

Typical SPX Smile Fit:
Ax~03, pu; =~—0.25, o6=0.10
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Vanilla European-style options
Solutions in “Fourier” space are simple

Ingredients:

1. The generalized Fourier transform of the payoff function:
For the call option:

A o© —I X Kl_iz
@)= [T =@ —Kyrax=—K"  Imz<1
f—oo (22 +i7)

2. The characteristic function of the Lévy process:

er(z) = f_o; ei""‘pT(x)dx = E[exp(izXT)] — eXP(_T‘I’(Z))

where W(z) is the “characteristic exponent”.

For the Point Jump model:

W(z) = —izw + %z20'2 — Mexp(igyz)—1) (Entire)

3. Finally, the Call Option price is given by :

—rT S 2 —Tey(z)
Sk N ==5-K [ [ 0] ™

The integration is along a line parallel to the real z-axis.



European-style options (cont.)
The solution is very easy to derive and “obvious”:

First, we need the inversion formula for the payoff function:

iv+oo .
g2(x) = ZL f e“o(2)dz, x=1logSr, z € Payoff strip
wdi

V—00

Then, by martingale pricing:

C(Sy) = e "Bl gllogS)) =4 B [ (57" (o)

27‘(‘ vV—00

—rT iv+oo ..
=< EU (So)= ™" g(z)dz
7T iv—o0

2
e PTG N Ty 4
=5 j: . (8y)"e g2(z)dz ,

Ok to exchange the integrations (sufficient conditions) if:

1. g(x) is Fourier integrable in some Payoff strip S, and
bounded for | x |< co.

2. 1(7) is regular in some strip Sy: a<Imz < 3

3. v=1Imz lies in the intersection of these two strips



A Standard Machine:
the Down-and-out Call (or Down-and-out “anything”)

How we will do it.

1. Write the payoff in terms of its Fourier Transform
2. Write the barrier condition using a representation for 1,y ;.

3. Bring an expectation inside an integral.
4. Find a “Fluctuation Identity” to do the expectation.
S. Done with General Formula!

This general procedure works for all the problems I
listed at the beginning and probably lots of others.

It saves having to learn a lot of the “heavy machinery” of
The Boyarchenko/Levendorskii approach.

6. Then, for your particular model:
Try to do as many integrals as possible analytically;

(Residue Calculus).

7. Do the remaining integrals numerically.



Down-and-out Call (or Down-and-out “anything”) (cont).

1. Write the pavoff in terms of its Fourier Transform

Minimum Process: S; = ming<,<7 S,

Cpoc(So, K, H,T)=e¢ "E|(S; —K)*1g, .y |

or, with x =log Sy, h =logH, and Ny = ming<,<r X,

froc(x,T)=e " TE[(e*"*T — K)* 1y, )]

—r d . A
=<"E| { P LA XD D Lo
mz<—



Down-and-out Call (or Down-and-out “anything”) (cont)

2. Write the barrier condition using a representation for 1,y ;.

where Y = x—h+ Ny.

This produces:

fro(x,T)=e""" x

dz d§ . : ol : :
E Imz<_127"lm°£<0_277i§g(Z) exp (izx + i&(x — h))exp(izXy +iEN7 )

3. Bring an expectation inside an integral.

We need a formula for E|exp(izX; +iéN7p )]



4. Find a “Fluctuation Identity” to do the expectation

Some Fluctuation Identities:

1. Factorization identities: (Spitzer, Rogozin, others)

9 _ .+ -
" ¢(z)—¢q (2)o, (2).

where

6 (@)= E[exp(izMp))| = q [ e 0 E[ ™ |ar

&y (2) = E[exp(izN ()| = qﬁlwe—nt[eiwt |at

7(q) is an independent (exponentially distributed)
random stopping time.

Not computationally effective. But, this one is:

br©=ewl [ dn _&loglg +9()]

Im&) " <Imp<o™ (=27) n (6 - 77)
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4. Find a “Fluctuation Identity” to do the expectation

Some Fluctuation Identities:

2. Here’s the one we really need:

af e TE[exp(izXy +i€N7 ) AT = ¢ )by (€ +2)

By Laplace Inversion:

E[exp(izXy +iENy )| = f 2§lr_qiqeqT by ()P (€ +2)
Reg>r
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5. Done with General Formula!

Here it is:

dq

froe D)= [ et Fpo(x.q)
Reg>r

where for the call option payoff, it reads

Fpoc(x,q) = [K"q_” ]x
dé¢  d; exp{iz(h—k)+i&(x—h)}
2mwiJ 27 (z—8&z(z+1i0)

G G,

o (2)d; (€)

Integration contours:

Ci:ImA <Im¢ < —1,
C; :Imoy(q) <Imz <—1and Im§ <Imz
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6. Then, for your particular model:
Try to do as many integrals as possible analytically;
(Residue Calculus).

7. Do the remaining integrals numerically.

Example 1: Suppose your model has “No negative jumps”.
(This means the Barrier is crossed continuously).

When there are no negative jumps, the Laplace transform of the
down-and-out call option is given by: (x > h)

Fpoc(x,q)|yn; = Fe(x,q) —exp{iv(q)(x — h) } Fg (h,q).

where Fg(x,q)is the Laplace transform of the European
(no barrier) call option:

dz —Ke T .
F )= - — k)t
) (x q) Ima1(¢I)L<[Imz<—1 27 Z(Z + l)(q + ¢(z)) P { IZ(x ) }

(This one could be proved directly from the PIDE).
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6. Then, for your particular model:
Try to do as many integrals as possible analytically;
(Residue Calculus).

7. Do the remaining integrals numerically.

Example 2: Suppose your model has a “Negative Point Jump”.

Then, you have to investigate the roots (zeros) of

q+yY(z)=0.

where
g+ (z) =q—izw+ 170" — A(exp(ip;z)—1)

It turns out there are (almost certainly) an infinity of these in
the complex z-plane. Then, I have a (conjectured) result using
these roots:

ies=T [ 1 . aexp{i(y;, —a)(x—h)}
|
ala+i)| @) " N7‘3w§ ¥'(7;)

Fpoc(x,q) =

« is the single lower half-plane root. (Ima < 0)
~; are the infinity of upper half-plane roots. (Im~; > 0)
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Figure 2.

The location of some roots of 7+ 1(z) =0 for the
point jump model.
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